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Stability of the periodic deformations in planar nematic layers 

by G. DERFEL 
Institute of Physics, Technical University of t bd i ,  93-005 t bd i ,  Poland 

(Received 2 July 1991; accepted 19 October 1991) 

The periodic deformations induced by external fields have been analysed by 
means of the Taylor expansion method based on the theorems of catastrophe 
theory. The analysis is restricted to the planar nematic slab influenced by a magnetic 
field. Two different configurations of the field which lead to periodic deformations 
with prevailing splay or twist we considered. The ranges of material constants at 
which the periodic state is stable and the threshold magnetic field strength have been 
found. The problem of transitions between the undeformed, uniformly deformed 
and periodic states is discussed. 

1. Introduction 
The periodic distortions induced by external fields in nematic liquid crystal layers 

are an interesting alternative to the uniform deformations of the Freedericksz type 
usually found. They have been observed experimentally in various geometries [ 141 
and analysed in several theoretical works [4-131. Generally, they can be expected in 
materials with great elastic anisotropy, for example in liquid-crystalline polymers. The 
linearized Euler-Lagrange equations have been used to analyse these problems. In this 
paper, planar nematic layers subjected to a magnetic field are considered. Two 
directions of the field are used: normal to the layer and parallel to the layer but normal 
to the initial director orientation. The method employed is based on a Taylor 
expansion of the free energy G of the layer, truncated according to the rules which stem 
from catastrophe theory [ 141; this approach yields qualitative information. The 
number of equilibrium states of the system and their disposition is revealed. The same 
method was applied earlier to the effects of the external fields on liquid crystals, for 
instance [15, 161. Therefore it will only be briefly sketched in the next section; the 
results agree with other works. Some new details concerning the stability of the periodic 
deformations are found. They are presented in section 3, and discussed in section 4. 

2. Method 
The idea of the method applied here is as follows. The free energy of the layer, G is 

expressed as a function of the angles, which are sufficient for the qualitative 
determination of the director distribution. The degenerate critical point of G is found 
and, in its vicinity, G is reduced to the catastrophe, i.e. to the topologically equivalent 
function of a standard form. The catastrophe yields a qualitative picture of the 
behaviour of the system at small deformations, since it gives the number and 
disposition of the equilibrium states of the system in the neighbourhood of its critical 
points. The procedure used for the determination of a suitable catastrophe includes an 
expansion in a Taylor series in the neighbourhood of the chosen critical point, the 
elimination of the inessential variables and limitation of the resulting power series to 
the order necessary for a proper description of the system. 
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432 G. Derfel 

It is assumed that the nematic material, characterized by elastic constants kl k,, 
and k33, and positive diamagnetic anisotropy Ax, is confined between two plates placed 
parallel to the (xy) plane at z = kd/2. The director is aligned along y. Strong surface 
anchoring is assumed. The magnetic field of strength B is used for the sake of simplicity. 
Two configurations are considered 

(i) Bllz, when the periodic distortion with prevailing splay occurs, 
(ii) B/Jx, when twist is predominant in the periodic distortion. 

The director orientation within the layer is determined by two angles: 8, between the 
director and its projection onto the (xy) plane, and w, between this projection and they 
axis. The director components are n, = cos 8 sin w, ny = cos 8 cos w and n, = sin 8. They 
are assumed to depend on z and to vary periodically along x. This is justified by the 
experimental results and allows us to avoid complications which arise when a 
generalized case of arbitrary patterns direction is taken into account. The free energy 
density of the layer is 

g = (1/2)(k, ,[sin 8 sin o(aO/ax) + cos 8 cos o(aw/ax) - cos 8(88/dz)12 

+ k,,[cos O2(aw/az) + cos w(aO/ax) - sin 8 cos 8 sin w(aw/ax)12 

+ k 4 [  -cos 8cos w(sin 8 cos w(a8jax) + sin w cos O(aw/ax)) 

-sin 8( - sin 8 sin w(ae/az) + cos 8 cos w/dz) 

- COS e(ae/ax)p 
+ [-sin 8(sin 8 cos w(ae/dz) + sin w cos 8(ao/az)) 

- cos 8 sin w(sin 8 cos o(aO/dx) + sin w cos 8(awpx))l2 

+ [COS 8 sin e(ae/az) + cos 8, sin o(ae/ax)12)) 

+ gmagnetic. (1) 

The two configurations of the magnetic field are related with two different components 
of the free energy density 

gmagnetic = - ( 1/2)AzB2 sin’ 8 

gmasnetic = - ( 1/2)AzB2 cos2 8 sin’ w 

(2) 

(3) 

for case 1, and 

for case 2. 
If small deformations are assumed, then the functions B(xz) and ~ ( x z )  can be 

approximated by appropriate trial functions. According to the discussion given in [lo], 
they should vary periodically in the x direction but should be shifted in phase by 4 2 .  
The adopted functions 

44 = tfk) cos (qxld), 

4 x 4  = ll/g(z) sin (qxld), 

(4) 

(5 )  
where and + are the amplitudes of the deformations, possess all of the essential 
topological features of the real director distribution. The functions f(z) and g(z) 
describe the dependence of the corresponding angles on z. Their forms were also 
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Periodic dejiormations in nematics 433 

discussed in [lo] and are given further by equations (13), (14), and (23), (24). The 
dimensionless wavevector is defined as 

q - 2 d I A  = d / l ,  (6) 
where A is the spatial period of the deformed structure. The stationary states of the 
deformed layer in an external field can be found by minimization of the catastrophe 
function, equivalent to the total free energy per unit area of the layer with respect to 5, $, 
and q. In order to calculate G(<$q), the energy density g is expanded in a Taylor series in 
powers of < and + in the vicinity of the undeformed state (<=O, $=O),  and then 
integrated 

The resulting series can be expressed as 

or in the form giving explicitly the dependence on q 

which stems from equation (8), since some of the coefficients aij can be written as a sum 
of two parts 

Ui j  = bijo + bijkqk. (10) 
It follows from formula (1) that k G2. The undeformed state (c = 0, $ -0) is a critical 
point of G for arbitrary q since aG/at = aG/a$ = 0 at this point. It is also evident that 
G(< = 0, 9 = 0, q) = 0 for every q and for arbitrary values of the parameters h, k ,  and k,. 
This means that there is no point to take q as a variable during the determination of the 
catastrophe type and only g and $ need be considered. The free energy of the states 
predicted by the catastrophe should be a minimum with respect to q. To assure this, the 
function q(5, $) is determined by means of the minimization condition dG/aq = 0 

I rn- 

and substituted into equation (9). The resulting function G(t ,  @)can be expressed as the 
power series in which q does not appear explicitly and i + j  takes only even values 

m r n  

The limiting value of q, 

qo= lim q, 

is required for the expansion. It can be obtained from the set of equations which arise 
when two of the minimization conditions are considered in the limit 5-0, $+O. 
Further procedures will be described separately for each geometry in the next section. 

r-o,v+o 
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434 G. Derfel 

3. Results 
3.1. BJJz 

In this case the function f (z) should be even and the function g(z) odd [lo]. They are 
approximated by 

f (z)= cos (nz/d), (1 3) 

g(z) = sin (2nz/d). (14) 
The coefficients of the initial expansion (9) which are important in further calculations 
are 

The reduced quantities h= B2d2AX/n2kl 1, kb= k33/kll  and k, = k2,/k, have been 
introduced in these formulae. The minimization conditions aG/a4 = 0 and aG/dt,b = 0 
considered in the limit (+O, $+O, give two solutions for qo. 

3.1.1. Uniform deformation, qo=O 
In this case G can be expressed by the series which contains only the coefficients bijo. 

G = b20052 + bOz0t,b2 + b400t4 + b22052t,b2 + . . . . (16) 
Since bozo is never zero, whereas bzO0=O for h= 1, the essential variable is 5.  Since 
b4oo#O at h =  1 for any acceptable kb and k,, the cusp catastrophe arises [14]. The 
minimization gives the undeformed state (=O, $ = O  for h e 1  and a uniformly 
deformed state ( = & (- b,oo/2b400)1’2, t,b = 0, for h > l..The typical ( (h)  dependence is 
illustrated in figure 1. 

3.1.2. Periodic deformations 
The non-zero value of the initial wavevector 

40 = 2n{ [4 - (4 + 3n)kt]/3n) 1’2 

exists only for sufficiently low twist to splay elastic constant ratio 

k, < 4 / ( 3 ~ +  4) = kIl. 
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ho h 
Figure 1. The typical shape of the I;@) or $(h) functions corresponding to the states of the layer 

predicted by the cusp catastrophe. ho is the threshold field; the full line shows the minima of 
G and the dotted line the other extremes. 

This limit takes the value of 0-298; this is close to 0-303 which was obtained in earlier 
works [4,7]. The power series has the form in equation (12) where the coefficients cij are 
combinations of b,. The determinant of the second derivative matrix vanishes for 
suitable choice of parameters 

4Czoco~ - c f  1 = 0, 
where 

czo = b o o  + bzozq& COZ = bozo + bozzq& c11= b11140. 

This determines the threshold magnetic field h, 

or 
h,= 1 -4([4-(4+3~)k,]/3~~}~ 

h, = 1 - 4(q0/2~)4. 

It does not depend on k, and is less than 1. This means that periodic deformations occur 
instead of a uniform deformation. The series can be reduced to the catastrophe after the 
normalisation procedure by means of a suitable change of variables [14] 

G = dz0u2 + d,-& + d,,u4 +. . . . (22) 
The calculations must be performed numerically because of the complicated analytical 
form of the resulting expressions; it is useless to give them explicitly. As previously, only 
the fourth degree terms must be retained to give rise to the cusp catastrophe. 
Minimization gives two stable states: o = 0, u = 0 and o = 0, u = f (- dzo/2d40)1’2. The 
former is due to the undeformed layer and the latter to the periodic distortion. They can 
be used to determine the values of 5, @ and q. The angles 5 and t,b arise continuously as 
shown in figure 1. The wavelength of the periodic distortion is finite at the threshold 
and varies weakly with the field. For k, = 0 2 5  the initial value of the wavelength A is 
about 4d. 

Periodic deformations exist for some particular ranges of h, kb and k,. This is 
illustrated in figure 2, in the coordinates (h, k,), where the regions corresponding to the 
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436 G. Derfel 

undeformed (I), uniformly deformed (11) and periodically deformed (111) states are 
distinguished for various kb The curve separating (I) and (111) results from equation 
(20). The boundary between regions due to (11) and (111) is determined by the equality of 
the free energies of the layer in both states. 

3.2. Bllx 

In this case the symmetry of the functionsf(z) and g(z) is interchanged [lo] 

f(z) = sin (2nz/d), (23) 

g(z) = cos (nzld). (24) 
The coefficients of the expansion (9) which are important in further calculations are 

Two minimisation conditions dG/dq = 0 and aG/a{ = 0 are taken in the limit t+O, 
$+O, to give two solutions for qo. 

3.2.1. Uniform deformations, qo = O  
The resulting power series (9) contains only the coefficients bijo; 

G =bzootz  + bozo$2 + b 0 4 d 4  + b400t4 + b z 2 0 t 2 $ 2  + . . . . (26) 
It is equivalent to the cusp catastrophe with the essential variable $. The undeformed 
state <=O,  $ = O  is stable for h< k, and the uniformly deformed state $= f 
( - b ~ ~ ~ / 2 b ~ 4 ~ ) 1 ’ z ,  < = 0, for h > k,. 

3.2.2. Periodic deformations 
These deformations arise with the initial wavevector value 

40 = 2n{ [4(kt - 1)- 3n]/3nkt}1’2. 

This is possible only for 

k, > (3n + 4)/4 = kt2.  
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II 

0.4 

0.3 
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1.4 h 1 .o 

Figure 2. The phase diagram showing existence of the stable states of the layer. I, undeformed 
state; 11, uniformly distorted state; 111, periodically deformed state. Four boundary lines 
between I1 and I11 are given for various values of k ,  as indicated. (a) Bllz, (b)  Bllx. 

The relation ktz= l/ktl and the value ktZ=3.356 agree with earlier work [4,7]. The 
threshold field h, obtained from an analogous equation to (19) is lower than k, and does 
not depend on k, 

h,=k,(l -4{[4(1 - k , ) + 3 ~ ] / 3 ~ k , } ~ ) .  (29) 

(30) 

It can be expressed in a form similar to equation (21) 

h,/k, = 1 - 4(40/2.)4, 
where qo is given by equation (27). As before the cusp catastrophe arises and similar 
results are obtained. The region of existence of the periodic distortion is shown in 
figure 2 in coordinates (h/k,, k,). The boundaries between various regions are 
determined in the same way as before. The initial value of the wavelength A is about 4d 
for k,=4. Equation (27) can be transformed into equation (17) when the substitution 
k,-+l/k, is made; the same holds for equations (30) and (20). 

4. Discussion 
The periodic distortions induced by a magnetic field in a planar nematic slab have 

been considered in two configurations. Due to the qualitative character of the method 
applied, the numerical results are only approximate but acceptable in the vicinity of the 
critical point. The discrepancies arise from the adoption of the functions (13), (14) or 
(23), (24) and from neglecting the higher order terms in the Taylor expansion. However, 
the qualitative features are predicted correctly. The typical behaviour is presented in 
figure 1. The diagrams in figure 2 show the ranges of parameters for which periodic 
deformations occur. Two characteristic limiting values ktl and ktZ = l /kt l  agree with 
earlier results. The threshold field for the perodic deformations is well approximated. 
The deformations arise continuously when the field increases. The shape of the phase 
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438 Periodic deformations in nematics 

diagrams agrees with that predicted in [13] containing the Lifschitz point. In both cases 
the right boundary due to the transition between uniform and periodic distortions was 
predicted to occur when the free energies of the layer aI;e equal in the neigbouring states. 
This approach is justified in many thermodynamic systems where the fluctuations play 
a role. Liquid crystal layers belong to mechanical systems which obey the perfect delay 
convention. They remain in one equilibrium state as long as it exists. Applying this rule 
to the present case shows that the periodic deformations should be stable with 
increasing field. 

The elastic constant ratios which are used in the computations have moderate 
magnitudes. The values of d,, or do,  are positive, i.e. the system is described by the cusp 
catastrophe. The coefficients d40 or do,  can be taken to be zero at the threshold field 
only for some combinations of extreme values of k,  and k,. In such a case the sixth 
degree of the Taylor expansion would be necessary. The butterfly catastrophe would 
arise and the transition between states (I) and (111) could be first order. Since such 
material constants do not seem to be plausible and since the corresponding 
calculations are rather laborious, the cusp catastrophe is adopted as sufficient. For 
reasons of simplicity the full form of the catastrophe function is not considered, i.e. the 
effects which could lead to the odd terms are not taken into account. 
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